Python的列表对象实际上是一个动态指针数组。当列表中没有空间储存新的元素时,列表会动态地改变其大小,以容纳新的元素。每次改变大小时,它都会预留一部分空间,以降低改变大小的频率。下面的程序可以观察列表的这一行为。
import pylab as pl
size = []
for i in xrange(10000):
size.append(sys.getsizeof(size))
pl.plot(size, lw="2")
pl.show()
程序的输出如下图所示,图中每个阶梯跳变的位置都表示一次内存分配,而每个阶梯的高度表示额外分配的内存的大小。
因此由于往列表中添加新元素时,基本上时间复杂度都为O(1),只有在重新分配内存时,时间复杂度才变为O(n)。由于每次额外分配的内存和列表的长度成正比,因此随着列表的增大,重新分配内存的次数会减少,从而整体上append()方法的平均时间复杂度为O(1)。这种动态数组很适合用来做数据采集,然而由于列表中的每个元素都是对象,比较浪费内存,因此用列表做大量数据的采集并不划算。我们希望通过类似NumPy数组的对象采集数据。
NumPy的数组没有这种动态改变大小的功能,numpy.append()函数每次都会重新分配整个数组,并把原来的数组复制到新数组中。下面的程序模拟列表的动态分配,从而实现动态数组:
class DynamicArray(object):
def __init__(self, item_type):
self._data = np.zeros(10, dtype=item_type)
self._size = 0
def get_data(self):
return self._data[:self._size]
def append(self, value):
if len(self._data) == self._size:
self._data = np.resize(self._data, int(len(self._data)*1.25))
self._data[self._size] = value
self._size += 1
item_type = np.dtype({
"names":["id", "x", "y", "z"],
"formats":["i4", "f8", "f8", "f8"]})
da = DynamicArray(item_type)
for i in xrange(100):
da.append((i, i*0.1, i*0.2, i*0.3))
data = da.get_data()
Python标准库中的array数组也提供了动态分配内存的功能,而且它和NumPy数组一样直接将数值的二进制数据保存在一块内存中,因此我们可以先用array数组收集数组,然后通过np.frombuffer()将array数组的数据内存直接转换为一个NumPy数组。下面是一个例子:
>>> from array import array
>>> a = array("d", [1,2,3,4]) # 创建一个array数组
>>> a
array('d', [1.0, 2.0, 3.0, 4.0])
>>> na = np.frombuffer(a, dtype=np.float) # 通过np.frombuffer()创建一个和a共享内存的NumPy数组
>>> na
array([ 1., 2., 3., 4.])
>>> na[1] = 20 # 修改NumPy数组中的第一个元素
>>> a
array('d', [1.0, 20.0, 3.0, 4.0]) # array数组中的第一个元素也同时改变
array数组只支持一维,如果我们需要采集多个频道的数据,可以将这些数据依次添加进array数组,然后通过reshape()方法将np.frombuffer()所创建的NumPy数组改为二维数组。下面是一个例子:
for i in range(100):
buf.append(math.sin(i*0.1)) ❶
buf.append(math.cos(i*0.1))
data = np.frombuffer(buf, dtype=np.float).reshape(-1, 2) ❷
print data
在这个例子中,❶我们通过array数组buf采集两个频道的数据,数据采集完毕之后,我们通过np.frombuffer()将其转换为NumPy数组,并通过reshape()将其形状改为(100,2)。
当每个频道的数据类型不同时,就不能采用上节所介绍的方法了。这时我们可以使用bytearray收集数据。bytearray是字节数组,因此我们首先需要通过struct模块将Python的数值转换成其字节表示形式。如果数据来自二进制文件或者硬件,那么我们得到得已经是字节数据,这个步骤可以省略。下面是使用bytearray进行数据采集的例子:
for i in range(100):
buf.extend(struct.pack("=hdd", i, math.sin(i*0.1), math.cos(i*0.1))) ❶
dtype = np.dtype({"names":["id","sin","cos"], "formats":["h", "d", "d"]}) ❷
data = np.frombuffer(buf, dtype=dtype) ❸
print data
❶采集三个频道的数据,其中频道1是短整型整数,其类型符号为”h”,频道2和3为双精度浮点数,其类型符号为”d”。类型格式字符串中的”=”表示输出得字节数据不进行内存对齐。即一条数据的字节数为2+8+8=16,如果没有”=”,那么一条数据的字节数则为8+8+8=24。
❷定义一个dtype对象表示一条数据的结构,dtype对象缺省不进行内存对齐,如果采集数据用的bytearray中的数据是内存对齐的话,只需要设置dtype()的align参数为True即可。
❸最后通过np.frombuffer()将bytearray转换为NumPy的结构数组。然后我们就可以通过data[“id”]、data[“sin”]和data[“cos”]访问三个频道的数据了。