用户程序想要访问IO设备需要调用操作系统提供的接口,即系统调用.当在用户程序中调用一个read操作时,系统先保存好read操作的参数,然后调用 int 80命令(也可能是sysenter)进入内核空间,在内核空间中,读操作的逻辑由sys_read函数实现.
在讲sys_read的实现过程之前,我们先来看看read操作在内核空间需要经历的层次结构.从图中可以看出,read操作首先经过虚拟文件系统曾 (vfs), 接下来是具体的文件系统层,Page cache层,通用块层(generic block layer),I/O调度层(I/O scheduler layer),块设备驱动层(block device driver layer),最后是块物理设备层(block device layer).
- 虚拟文件系统层:该层屏蔽了下层的具体操作,为上层提供统一的接口,如vfs_read,vfs_write等.vfs_read,vfs_write通过调用下层具体文件系统的接口来实现相应的功能.
- 具体文件系统层:该层针对每一类文件系统都有相应的操作和实现了,包含了具体文件系统的处理逻辑.
- page cache层:该层缓存了从块设备中获取的数据.引入该层的目的是避免频繁的块设备访问,如果在page cache中已经缓存了I/O请求的数据,则可以将数据直接返回,无需访问块设备.
- 通过块层:接收上层的I/O请求,并最终发出I/O请求.该层向上层屏蔽了下层设备的特性.
- I/O调度层: 接收通用块层发出的 IO 请求,缓存请求并试图合并相邻的请求(如果这两个请求的数据在磁盘上是相邻的)。并根据设置好的调度算法,回调驱动层提供的请求处理函数,以处理具体的 IO 请求
- 块设备驱动层:从上层取出请求,并根据参数,操作具体的设备.
- 块设备层:真正的物理设备.
了解了内核层次的结构,让我们来看一下read操作的代码实现.
sys_read函数声明在include/linux/syscalls.h文件中,
asmlinkage long sys_read(unsigned int fd, char __user *buf, size_t count);
SYSCALL_DEFINE3(read, unsigned int, fd, char __user *, buf, size_t, count) { struct fd f = fdget(fd); ssize_t ret = -EBADF; if (f.file) { loff_t pos = file_pos_read(f.file); ret = vfs_read(f.file, buf, count, &pos); //调用vfs layer中的read操作 file_pos_write(f.file, pos);//设置当前文件的位置 fdput(f); } return ret; }
vfs_read函数属于vfs layer,定义在fs/read_write.c, 其主要功能是调用具体文件系统中对应的read操作,如果具体文件系统没有提供read操作,则使用默认的do_sync_read函数.
ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos) { ssize_t ret; if (!(file->f_mode & FMODE_READ)) return -EBADF; if (!file->f_op || (!file->f_op->read && !file->f_op->aio_read)) return -EINVAL; if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return -EFAULT; ret = rw_verify_area(READ, file, pos, count); if (ret >= 0) { count = ret; if (file->f_op->read) { ret = file->f_op->read(file, buf, count, pos); //该函数由具体的文件系统指定 } else ret = do_sync_read(file, buf, count, pos); //内核默认的读文件操作 if (ret > 0) { fsnotify_access(file); add_rchar(current, ret); } inc_syscr(current); } return ret; }
file->f_op的类型为struct file_operations,
该类型定义了一系列涉及文件操作的函数指针,针对不同的文件系统,这些函数指针指向不同的实现.以ext4
文件系统为例子,该数据结构的初始化在fs/ext4/file.c,从该初始化可以知道,ext4的read操作调用了内核自带的
do_sync_read()函数
const struct file_operations ext4_file_operations = { .llseek = ext4_llseek, .read = do_sync_read, .write = do_sync_write, .aio_read = generic_file_aio_read, .aio_write = ext4_file_write, .unlocked_ioctl = ext4_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ext4_compat_ioctl, #endif .mmap = ext4_file_mmap, .open = ext4_file_open, .release = ext4_release_file, .fsync = ext4_sync_file, .splice_read = generic_file_splice_read, .splice_write = generic_file_splice_write, .fallocate = ext4_fallocate, };
do_sync_read()函数定义fs/read_write.c中,
ssize_t do_sync_read(struct file *filp, char __user *buf, size_t len, loff_t *ppos) { struct iovec iov = { .iov_base = buf, .iov_len = len }; struct kiocb kiocb; ssize_t ret; init_sync_kiocb(&kiocb, filp);//初始化kiocp,描述符kiocb是用来记录I/O操作的完成状态 kiocb.ki_pos = *ppos; kiocb.ki_left = len; kiocb.ki_nbytes = len; for (;;) { ret = filp->f_op->aio_read(&kiocb, &iov, 1, kiocb.ki_pos);//调用真正做读操作的函数,ext4文件系统在fs/ext4/file.c中配置 if (ret != -EIOCBRETRY) break; wait_on_retry_sync_kiocb(&kiocb); } if (-EIOCBQUEUED == ret) ret = wait_on_sync_kiocb(&kiocb); *ppos = kiocb.ki_pos; return ret; }
在ext4文件系统中filp->f_op->aio_read函数指针只想generic_file_aio_read,
该函数定义于mm/filemap.c文件中,该函数有两个执行路径,如果是以O_DIRECT方式打开文件,则读操作跳过page
cache直接去读取磁盘,否则调用do_generic_sync_read函数尝试从page cache中获取所需的数据.
ssize_t generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t pos) { struct file *filp = iocb->ki_filp; ssize_t retval; unsigned long seg = 0; size_t count; loff_t *ppos = &iocb->ki_pos; count = 0; retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); if (retval) return retval; /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ if (filp->f_flags & O_DIRECT) { loff_t size; struct address_space *mapping; struct inode *inode; struct timex txc; do_gettimeofday(&(txc.time)); mapping = filp->f_mapping; inode = mapping->host; if (!count) goto out; /* skip atime */ size = i_size_read(inode); if (pos < size) { retval = filemap_write_and_wait_range(mapping, pos, pos + iov_length(iov, nr_segs) - 1); if (!retval) { retval = mapping->a_ops->direct_IO(READ, iocb, iov, pos, nr_segs); } if (retval > 0) { *ppos = pos + retval; count -= retval; } /* * Btrfs can have a short DIO read if we encounter * compressed extents, so if there was an error, or if * we've already read everything we wanted to, or if * there was a short read because we hit EOF, go ahead * and return. Otherwise fallthrough to buffered io for * the rest of the read. */ if (retval < 0 || !count || *ppos >= size) { file_accessed(filp); goto out; } } } count = retval; for (seg = 0; seg < nr_segs; seg++) { read_descriptor_t desc; loff_t offset = 0; /* * If we did a short DIO read we need to skip the section of the * iov that we've already read data into. */ if (count) { if (count > iov[seg].iov_len) { count -= iov[seg].iov_len; continue; } offset = count; count = 0; } desc.written = 0; desc.arg.buf = iov[seg].iov_base + offset; desc.count = iov[seg].iov_len - offset; if (desc.count == 0) continue; desc.error = 0; do_generic_file_read(filp, ppos, &desc, file_read_actor); retval += desc.written; if (desc.error) { retval = retval ?: desc.error; break; } if (desc.count > 0) break; } out: return retval; }
do_generic_file_read定义在mm/filemap.c文件中,该函数调用page
cache层中相关的函数.如果所需数据存在与page cache中,并且数据不是dirty的,则从page
cache中直接获取数据返回.如果数据在page cache中不存在,或者数据是dirty的,则page
cache会引发读磁盘的操作.该函数的读磁盘并不是简单的只读取所需数据的所在的block,而是会有一定的预读机制来提高cache的命中率,减少磁
盘访问的次数.
page
cache层中真正读磁盘的操作为readpage系列,readpage系列函数具体指向的函数实现在fs/ext4/inode.c文件中定义,该文
件中有很多个struct
address_space_operation对象来对应与不同日志机制,我们选择linux默认的ordered模式的日志机制来描述I/O的整个流
程, ordered模式对应的readpage系列函数如下所示.
static const struct address_space_operations ext4_ordered_aops = { .readpage = ext4_readpage, .readpages = ext4_readpages, .writepage = ext4_writepage, .write_begin = ext4_write_begin, .write_end = ext4_ordered_write_end, .bmap = ext4_bmap, .invalidatepage = ext4_invalidatepage, .releasepage = ext4_releasepage, .direct_IO = ext4_direct_IO, .migratepage = buffer_migrate_page, .is_partially_uptodate = block_is_partially_uptodate, .error_remove_page = generic_error_remove_page, };
为简化流程,我们选取最简单的ext4_readpage函数来说明,该函数实现位于fs/ext4/inode.c中,函数很简单,只是调用了
mpage_readpage函数.mpage_readpage位于fs/mpage.c文件中,该函数生成一个IO请求,并提交给Generic
block layer.
int mpage_readpage(struct page *page, get_block_t get_block) { struct bio *bio = NULL; sector_t last_block_in_bio = 0; struct buffer_head map_bh; unsigned long first_logical_block = 0; map_bh.b_state = 0; map_bh.b_size = 0; bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio, &map_bh, &first_logical_block, get_block); if (bio) mpage_bio_submit(READ, bio); return 0; }
Generic block layer会将该请求分发到具体设备的IO队列中,由I/O Scheduler去调用具体的driver接口获取所需的数据.
至此,在Guest vm中整个I/O的流程已经介绍完了,后续的文章会介绍I/O操作如何从Guest vm跳转到kvm及如何在qemu中模拟I/O设备.
参考资料: